
CRA GCC '02 Complexity/Self-* 1

Conquering Complexity
Building Systems with Billions of Parts

Participants (at the end): 
Rod Brooks, Seth Copen Goldstein, Anant Jhingran,

Len Kleinrock, Richard Newton, Steve Reiss, Bob Sproull

June 25, 2002



CRA GCC '02 Complexity/Self-* 2

Conquering Complexity
Building Systems with Billions of Parts

Participants (at the end): 
Rod Brooks, Seth Copen Goldstein, Anant Jhingran,

Len Kleinrock, Richard Newton, Steve Reiss, Bob Sproull

June 25, 2002



CRA GCC '02 Complexity/Self-* 3

What do these have in common?

musical greeting card?



CRA GCC '02 Complexity/Self-* 4

Mission Statement

To reformulate computing systems 
architectures at all levels (from 
circuits to global-scale distributed 
systems) that break through the 
complexity wall to deliver robust, 
scalable, long-lasting, systems.



CRA GCC '02 Complexity/Self-* 5

Why?
• We need computing systems that are the 

agent of change in society rather that enemy 
of change

• Every artifact we build or grow in the future 
will likely have a computing component

• We have run into a complexity wall, that limits 
and inhibits growth in business and societal 
systems

Tomorrow’s computing 
systems cannot be built 
using methods of today.



CRA GCC '02 Complexity/Self-* 6

Two Themes
1) Complex organized behavior out of 

many simple unreliable components

2) Make complex systems simple to the
– User
– Administrator
– Designer



CRA GCC '02 Complexity/Self-* 7

Common Challenges

• Federation of a large number of units
• Units that can change over time
• Wide and dynamic range of latencies 

and bandwidths among components 
(all the way to occasionally 
disconnected?)

• Scaling with ease



CRA GCC '02 Complexity/Self-* 8

Common Attributes
• Self-configuration

– The inductive step is free
– Emergent behavior

• Self-Adaptation
– Changes in environment (e.g., load, failures)

• Reusablity
– Small changes in function without 

reengineering
– Meta-programming

• Motherhood and apple pie (robust, secure, stable, …)



CRA GCC '02 Complexity/Self-* 9

How we do it now
• Abstraction/Layering

– Fixed APIs between layers
– Fixed functionality at each layer

• Deterministic interaction between 
components

• Deterministic approach to failure
– Explicit coding of failure into system

• Performance centric implementations
• Result: Rigid, brittle systems



CRA GCC '02 Complexity/Self-* 10

Possible Approaches
• Collective intelligence

E.g., Swarms
• Localize change
• Evolutionary models

– Adaptation
– Bio-mimetic approaches

• Modeling for system level effects
• More autonomy at every level
• Market mechanisms
• Simple Many and Self-Healing (SMASH)



CRA GCC '02 Complexity/Self-* 11

Some Applications
• Build reliable computer systems with billions of 

components
• Sensor network that covers the earth
• Connect every person to the network
• Smart matter - reconfigurable artifacts
• Networked matter (instrumented earth)
• Simulated Reality: Simulation engine
• Understanding biological systems
• Intelligent Transportation Systems
• Critical to Ubicomp & Trustworthy



CRA GCC '02 Complexity/Self-* 12

Computational Paint
• Click to add text

Organized behavior from many simple devices



CRA GCC '02 Complexity/Self-* 13

Intelligent Transportation Systems

• Click to add text

Robust, reliable, maintainable, scalable 
behavior from complex devices



CRA GCC '02 Complexity/Self-* 14

Success Is
• Complexity is not the weakest link
• Metrics

– Deployed systems per engineer
– Maintenance costs
– Administration costs
– System longevity

• At least linear improvement with 
increased size



CRA GCC '02 Complexity/Self-* 15

Conclusions
• Complexity limits our ability to meet 

important needs
• Tweaking won’t solve the problem
• We need a top-to-bottom re-examination of 

the way we architect and build computing 
systems

We must conquer complexity


