Conquering Complexity
Building Systems with Billions of Parts

Participants (at the end):

Rod Brooks, Seth Copen Goldstein, Anant Jhingran,
Len Kleinrock, Richard Newton, Steve Reiss, Bob Sproull

June 25, 2002

CRA GCC "02 Complexity/Self-*



Conquering Complexity
Building Systems with Billions of Parts

Participants (at the end):

Rod Brooks, Seth Copen Goldstein, Anant Jhingran,
Len Kleinrock, Richard Newton, Steve Reiss, Bob Sproull

June 25, 2002

CRA GCC "02 Complexity/Self-*



What do these have in common?

- -"'-'-q-ﬁ:. R b HE

|

l
’f

musical greeting card?




Mission Statement

To reformulate computing systems
architectures at all levels (from
circuits to global-scale distributed
systems) that break through the
complexity wall to deliver robust,
scalable, long-lasting, systems.



Why?

 We need computing systems that are the
agent of change in society rather that enemy
of change

e Every artifact we build or grow in the future
will likely have a computing component

« We have run into a complexity wall, that limits
and inhibits growth in business and societal
systems

Tomorrow’'s computing

systems cannot be built
using methods of today.

CRA GCC 02



Two Themes

1) Complex organized behavior out of
many simple unreliable components

2) Make complex systems simple to the
- User
— Administrator
— Designer



Common Challenges

 Federation of a large number of units
e Units that can change over time

 Wide and dynamic range of latencies
and bandwidths among components
(all the way to occasionally
disconnected?)

e Scaling with ease



Common Attributes

e Self-configuration
- The inductive step Is free
— Emergent behavior

e Self-Adaptation
— Changes in environment (e.g., load, failures)

e Reusablity

— Small changes in function without
reengineering

- Meta-programming
e Motherhood and apple pie (robust, secure, stable, ...)



How we do 1t now

Abstraction/Layering
- Fixed APIs between layers
- Fixed functionality at each layer

Deterministic interaction between
components

Deterministic approach to failure
— Explicit coding of failure into system

Performance centric implementations
Result: Rigid, brittle systems



Possible Approaches

Collective intelligence
E.g., Swarms

Localize change

Evolutionary models
- Adaptation
- Blo-mimetic approaches

Modeling for system level effects

More autonomy at every level

Market mechanisms

Simple Many and Self-Healing (SMASH)



Some Applications

e Build reliable computer systems with billions of
components

e Sensor network that covers the earth

e Connect every person to the network

« Smart matter - reconfigurable artifacts
 Networked matter (instrumented earth)
e Simulated Reality: Simulation engine

e Understanding biological systems

* Intelligent Transportation Systems

CRA GCC "02 Complexity/Self-* 11



Computational Paint

e Click to add text

Organized behavior from many simple devices



Intelligent Transportation Systems

e Click to add text

Robust, reliable, maintainable, scalable
behavior from complex devices



Success Is

 Complexity Is not the weakest link

e Metrics
- Deployed systems per engineer
- Maintenance costs
— Administration costs
- System longevity
e At least linear improvement with
Increased size



Conclusions

e Complexity limits our ability to meet
Important needs

e Tweaking won't solve the problem

e We need a top-to-bottom re-examination of
the way we architect and build computing
systems

We must conquer complexity



