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What do these have in common?
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Mission Statement

To reformulate computing systems
architectures at all levels (from
circuits to global-scale distributed
systems) that break through the
complexity wall to deliver robust,
scalable, long-lasting, systems.



Why?

 We need computing systems that are the
agent of change in society rather that enemy
of change

e Every artifact we build or grow in the future
will likely have a computing component

« We have run into a complexity wall, that limits
and inhibits growth in business and societal
systems

Tomorrow’'s computing

systems cannot be built
using methods of today.
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Two Themes

1) Complex organized behavior out of
many simple unreliable components

2) Make complex systems simple to the
- User
— Administrator
— Designer



Common Challenges

 Federation of a large number of units
e Units that can change over time

 Wide and dynamic range of latencies
and bandwidths among components
(all the way to occasionally
disconnected?)

e Scaling with ease



Common Attributes

e Self-configuration
- The inductive step Is free
— Emergent behavior

e Self-Adaptation
— Changes in environment (e.g., load, failures)

e Reusablity

— Small changes in function without
reengineering

- Meta-programming
e Motherhood and apple pie (robust, secure, stable, ...)



How we do 1t now

Abstraction/Layering
- Fixed APIs between layers
- Fixed functionality at each layer

Deterministic interaction between
components

Deterministic approach to failure
— Explicit coding of failure into system

Performance centric implementations
Result: Rigid, brittle systems



Possible Approaches

Collective intelligence
E.g., Swarms

Localize change

Evolutionary models
- Adaptation
- Blo-mimetic approaches

Modeling for system level effects

More autonomy at every level

Market mechanisms

Simple Many and Self-Healing (SMASH)



Some Applications

e Build reliable computer systems with billions of
components

e Sensor network that covers the earth

e Connect every person to the network

« Smart matter - reconfigurable artifacts
 Networked matter (instrumented earth)
e Simulated Reality: Simulation engine

e Understanding biological systems

* Intelligent Transportation Systems
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Computational Paint

e Click to add text

Organized behavior from many simple devices



Intelligent Transportation Systems

e Click to add text

Robust, reliable, maintainable, scalable
behavior from complex devices



Success Is

 Complexity Is not the weakest link

e Metrics
- Deployed systems per engineer
- Maintenance costs
— Administration costs
- System longevity
e At least linear improvement with
Increased size



Conclusions

e Complexity limits our ability to meet
Important needs

e Tweaking won't solve the problem

e We need a top-to-bottom re-examination of
the way we architect and build computing
systems

We must conquer complexity



